Deformation of the lithosphere and what microstructures can tell you about it

Renée Heilbronner

Basel University Tromsø University

Stefan Müller medal lecture

mammoth and lithosphere

Gary Larson: Early microscopy

deformation ↔ weakening

www.unavco.org

Our vision of the mechanisms of lithosphere dynamics and mantlelithosphere interactions becomes less and less blurred. Yet, many key questions remain open due to the (principally) insufficient observational and experimental constraints.

Evgueni Burov (Stephan Mueller Medal Lecture 2015)

the eye of the needle

how to observe by watching ...

what we see in an image

microstructure is... 2D section of 3D body ? deformed geometry ? particles ? patterns ?

quantified

applies to... statistics mechanics (rheology) geology geophysics

learning from stereology

A.E.O.J. Delesse

A.K. Rosiwal

Glagolev and Goldmann (1934)

Achille Ernest Oscar Joseph Delesse (1817–1881)

$$\sqrt{V} = AA$$

August Karl Rosiwal (1860–1923)

 $V_V = A_A = L_L$

Andrei Aleksandrovich Glagolev (1894–1969)

 $V_V = A_A = L_L = P_P$

getting into digital image analysis

Wayne Rasband

1987 NIH Image (Pascal)
1997 Image J (Java)
2007 → Fiji ('Fiji is just ImageJ')

Steve Barrett 1993 Image SXM (Pascal)

shape and strain of particles

John G. Ramsay

Edwin A. Abbott

 $R_f - \phi$ method

orientation imaging

AVA (Achsenverteilungsanalyse)

Bruno Sander

lithosphere deformation in the lab

motivation

kilometers of displacement

from twinning to superplasticity

displacement in - shear strain out?

CTI 600°C

CT3 700°C

CT2 800°C

 $R_{\rm f}$

particles and surfaces

describing 'shape'

500 µm

what do we learn ?

- every grain boundary is a strain marker
- one mineralogizal phase implies one rheology
- grain boundary straight boundaries
- texture and microstructure go together

- visually defined grain boundary
- visually defined grain
- ³ mechanically defined grain boundary region
- ⁴ mechanically defined core of grain

lithosphere deformation in the lab

I Carrara marble triaxial gas apparatus Texas A&M University γ < 3

2 Black Hills Quartzite solid medium apparatus Brown University γ < 8

3 Olivine-Orthopyroxene torsion apparatus University of Minnesota $\gamma < 30$

"... der freche Gassenjunge ..."

Quartz

"....the cheeky street urchin"

- regime 1, 2, 3 (lab) versus
- bulging sgr gbm (field)

The eastern Tonale fault zone: a 'natural laboratory' for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C

Michael Stipp*, Holger Stünitz, Renée Heilbronner, Stefan M. Schmid

Department of Earth Sciences, Basel University, Bernoullistrasse 32, 4056 Basel, Switzerland Received 30 November 2000; received in revised form 24 January 2002; accepted 26 February 2002

• quartz piezometer

The recrystallized grain size piezometer for quartz

Michael Stipp and Jan Tullis Department of Geological Sciences, Brown University, Providence, Rhode Island, USA

Received 18 August 2003; revised 24 September 2003; accepted 30 September 2003; published 4 November 2003.

BHQ - texture and grain size

Jan Tullis and ...

her Grigg's apparatus

Dislocation creep regime 3 $p_c = 1.5 \text{ GPa T} = 850 - 915^{\circ}\text{C}$ $\dot{\gamma} = 1 - 2 \cdot 10^{-5} \text{ s}^{-1}$ up to $\gamma \sim 7$!!!!

Heilbronner & Tullis (2006)

Black Hills Quartzite (circular polarization)

regime 3

do the CIP - get the texture

Dislocation creep regime 3

circular polarization

from texture to grain size

w935 COI

w 935 grain boundary map w 935 grain map

why stripstar ?

regime 3 ... 2 ... I - go EBSD !

put the CIP glasses on

comparing CIP and EBSD

optical microscopy in the SEM

100 µm

positive CLUT

do the stripstar again !

...hmmm...

re-measure piezometer in EBSD

difference ≠ measuring artefact

check the grain size in the Y domain

Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite

Renée Heilbronner¹ and Jan Tullis²

"...the recrystallized grain size of the rhomb domain is approx. 12 μ m and that of the prism domain is approx. 19 μ m, corresponding to shear stresses of 93 and 64 MPa..."

Y domain = 2 subdomains

we actually got it right !

 $\Rightarrow \tau = 86 \text{ MPa}$

 $\Rightarrow \tau = 114 \text{ MPa}$

what do we learn ?

- orientation images "... says more than a thousand pole figures"
- EBSD grains \approx optical grains (CIP grains)
- 3D grain size distributions are not what we see in 2D
- shear piezometer \neq coaxial piezometer
- recrystallized grain size depends on CPO
- one mineralogical phase \neq one rheology

lithosphere deformation in the lab

I Carrara marble triaxial gas apparatus Texas A&M University γ < 3

2 Black Hills Quartzite solid medium apparatus Brown University γ < 8

3 Olivine-Orthopyroxene torsion apparatus
 University of Minnesota
 γ < 30

getting weak in the knees

from dislocation creep to diffusion creep

how diffuse is diffusion creep?

going to high strains

Gas medium High pressure Torsion apparatus (UMN)

powder mixture 70% iron-rich olivine 30% orthopyroxene hotpressed @1200°C

Miki Tasaka

Mark Zimmerman

David Kohlstedt

 $\begin{array}{l} p_c = 300 \mbox{ MPa} \\ T = 1200^{\circ} C \\ \dot{\gamma} = 2.6 \cdot 10^{-5} \mbox{ to } 6.8 \cdot 10^{-4} \mbox{ s}^{-1} \\ \tau = 35 \mbox{ to } 226 \mbox{ MPa} \\ \mbox{ up to } \gamma \sim 26 \end{array}$

diffusion creep ≠ random

100 % Px

100 % Px

what do we learn

- random does not 'look random'
- diffusion process does not always create random distribution
- starting material is not randomly mixed

so what do microstructures tell us ?

more than you want not what you expected confusing stories

"Finally..."

time after talk

"... Finally, Heilbronner has also been very involved in creating better acceptance and working conditions of women in the scientific community."

"Finally..."

"... Finally, Heilbronner has also been very involved in creating better acceptance and working conditions of women in the scientific community."

bla bla bla

time after talk

Betti Richter Rüdiger Kilian Sina Marti Renée Heilbronner

