Deformation of the lithosphere and what microstructures can tell you about it

Renée Heilbronner

Basel University
Tromsø University

EGU Stefan Müller medal lecture

mammoth and lithosphere

deformation \leftrightarrow weakening

Win Means: Stress and Strain (1976)
www.unavco.org
Our vision of the mechanisms of lithosphere dynamics and mantlelithosphere interactions becomes less and less blurred. Yet, many key questions remain open due to the (principally) insufficient observational and experimental constraints.

Evgueni Burov (Stephan Mueller Medal Lecture 2015)

the eye of the needle

how to observe by watching ...

what we see in an image

microstructure is... 2D section of 3D body? deformed geometry? particles? patterns?

applies to... statistics mechanics (rheology) geology geophysics

learning from stereology

Achille Ernest Oscar Joseph Delesse (I8I7-I88|)

$$
V V=A A
$$

August Karl Rosiwal (1860-1923)

$$
V V=A A=L L
$$

Andrei Aleksandrovich Glagolev (1894-1969)

$$
V V=A A=L L=P P
$$

Glagolev and Goldmann (I934)

getting into digital image analysis

Wayne Rasband

I987 NIH Image (Pascal) 1997 Image J (Java) $2007 \rightarrow$ Fiji ('Fiji is just ImageJ')

Steve Barrett
1993 Image SXM (Pascal)

Lazy Macros

shape and strain of particles

John G. Ramsay

Edwin A. Abbott

$R_{f}-\varphi$ method

orientation imaging

AVA (Achsenverteilungsanalyse)

Bruno Sander

lithosphere deformation in the lab

I Carrara marble triaxial gas apparatus Texas A\&M University $\gamma<3$

2 Black Hills Quartzite solid medium apparatus Brown University $\gamma<8$

3 Olivine-Orthopyroxene torsion apparatus
University of Minnesota $\gamma<30$

motivation

kilometers of displacement

Alber Heim (1929)

from twinning to superplasticity

Stefan Schmid

Steve Bauer
regime 1
regime 2

displacement in - shear strain out?

CTI $600^{\circ} \mathrm{C} \quad 500 \mu \mathrm{~m}$

R_{f}

CT3 $700^{\circ} \mathrm{C}$

R_{f}

CT2 $800^{\circ} \mathrm{C}$

R_{f}

particles and surfaces

SURFOR

describing 'shape'

lobate boundaries

what do we learn?

- every grain bçundary is a strain marker
- one mineralogi, al phase implies one rheology
- grain boundary s'/ding implies straight boundaries
- texture and micros fucture go together

lithosphere deformation in the lab

I Carrara marble triaxial gas apparatus Texas A\&M University $\gamma<3$

2 Black Hills Quartzite solid medium apparatus Brown University $\gamma<8$

3 Olivine-Orthopyroxene torsion apparatus
University of Minnesota $\gamma<30$

"... der freche Gassenjunge

Quartz

"....the cheeky street urchin"

- regime I, 2, 3 (lab) versus
- bulging - sgr - gbm (field)

The eastern Tonale fault zone: a 'natural laboratory' for crystal plastic deformation of quartz over a temperature range from 250 to $700^{\circ} \mathrm{C}$

Michael Stipp*, Holger Stünitz, Renée Heilbronner, Stefan M. Schmid

Department of Earth Sciences, Basel University, Bernoullistrasse 32, 4056 Basel, Switzerland Received 30 November 2000; received in revised form 24 January 2002; accepted 26 February 2002

- quartz piezometer

The recrystallized grain size piezometer for quartz
Michael Stipp and Jan Tullis
Department of Geological Sciences, Brown University, Providence, Rhode Island, USA
Received 18 August 2003; revised 24 September 2003; accepted 30 September 2003; published 4 November 2003.

BHQ - texture and grain size

Jan Tullis and ...

her Grigg's apparatus

Dislocation creep regime 3

$$
\mathrm{Pc}_{\mathrm{c}}=1.5 \mathrm{GPa} \mathrm{~T}=850-915^{\circ} \mathrm{C}
$$

$$
\dot{\gamma}=1-2 \cdot 10^{-5} \mathrm{~s}^{-1}
$$

$$
\text { up to } \gamma \sim 7 \text { !!!! }
$$

Heilbronner \& Tullis (2006)

do the CIP - get the texture

Dislocation creep regime 3

circular polarization

c-axis coloring

from texture to grain size

w935 COI

w 935 grain boundary map w 935 grain map

why stripstar?

regime 3 ... 2 ... I - go EBSD!

- $100 \mu \mathrm{~m}$

put the CIP glasses on

comparing CIP and EBSD

regime I (wl092)

optical microscopy in the SEM

do the stripstar again!

CIP grain boundaries RMS of 2D sections
Stipp \& Tullis (2003) original data

EBSD grain boundaries mode of 3D grains
Heilbronner \& Tullis $(2002,2006)$ re-measured

re-measure piezometer in EBSD

quartz piezometer

CIP grain boundaries RMS of 2D sections
Stipp \& Tullis (2003) original data

EBSD grain boundaries mode of 3D grains
Heilbronner \& Tullis $(2002,2006)$ re-measured

EBSD grain boundaries mode of 3D grains
Stipp \& Tullis (2003) original data re-measured by Prior

difference \neq measuring artefact

quartz piezometer

CIP grain boundaries RMS of 2D sections published piezometer $\mathrm{d}(\mu \mathrm{m})=363 \mathrm{I} \Delta \sigma^{-1.26}$
EBSD grain boundaries mode of 3D grains
shear
$D(\mu \mathrm{~m})=1473 \Delta \sigma^{-0.86}$
EBSD grain boundaries mode of 3D grains
coaxial (piezo samples)
$\mathrm{D}(\mu \mathrm{m})=3325 \Delta \sigma^{-1.13}$

check the grain size in the Y domain

Evolution of caxis pole figures and grain size
during dynamic recrystallization:
Results from experimentally sheared quartzite
Renée Heilbronner ${ }^{1}$ and Jan Tullis ${ }^{2}$
"...the recrystallized grain size of the rhomb domain is approx. $12 \mu \mathrm{~m}$ and that of the prism domain is approx. $19 \mu \mathrm{~m}$, corresponding to shear stresses of 93 and $64 \mathrm{MPa} . . . "$

Y domain $=2$ subdomains

we actually got it right !

what do we learn?

- orientation images "... says more than a thousand pole figures"
- EBSD grains \approx optical grains (CIP grains)
- 3D grain size distributions are not what we see in 2D
- shear piezometer \neq coaxial piezometer
- recrystallized grain size depends on CPO
- one mineralogical phase \neq one rheology

lithosphere deformation in the lab

I Carrara marble triaxial gas apparatus Texas A\&M University $\gamma<3$

2 Black Hills Quartzite solid medium apparatus Brown University Y<8

3 Olivine-Orthopyroxene torsion apparatus University of Minnesota $Y<30$

getting weak in the knees

from dislocation creep to diffusion creep

how diffuse is diffusion creep?

going to high strains

Gas medium High pressure Torsion apparatus (UMN)

Miki Tasaka

Mark Zimmerman

David Kohlstedt
powder mixture 70% iron-rich olivine 30\% orthopyroxene hotpressed @ $1200^{\circ} \mathrm{C}$

$\mathrm{P}_{\mathrm{c}}=300 \mathrm{MPa}$
$\mathrm{T}=1200^{\circ} \mathrm{C}$
$\dot{\gamma}=2.6 \cdot 10^{-5}$ to $6.8 \cdot 10^{-4} \mathrm{~s}^{-1}$
$\mathrm{T}=35$ to 226 MPa
up to $\gamma \sim 26$

diffusion creep \neq random

what do we learn

- random does not 'look random'
- diffusion process does not always create random distribution
- starting material is not randomly mixed

so what do microstructures tell us?

more than you want
not what you expected
confusing stories

Slow Food ${ }^{\circ}$...for thought

"Finally..."

"Finally..."

